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Summary. Inequalities are derived for the quality of exponential approxi-
mation to NBUE (new better than used) and NWUE (new worse than used)

distributioans.
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]’ 1l. Introduction. If a random variable is exponentially distributed with

.. , u

- U=EX and y, = EXZ, then ., = Zuz. Defining o = [-ii--ll,‘ it is
. 2 2 P 2u2\ /

M tempting to comjecture that under mild restrictions a distibution with

small o 1is approximately exponential. That restrictions are needed is

®

. 4
~ seen by the example, Pr(X=0) = Pr(X-l) = l, for which p = 0. \'

The scale invariant quantity, 0, was suggested by Keilson [7]% It

has an interesting interpretation. Define G(x) = u-l f:'F(s)ds, the
statipndry_sggeggl distribution corresponding to F. Theﬁ Mg = u2/2u
and b él ;E - ll: The parameter p 1is thus the scaled (by u) distance
Ti between U and ﬁG.i For F exponential, F =G and thus u = uGﬂH

The problem of interest can be stated as follows: Given a class

4 of distributions, along with the first two moments N and Hy find

upper b?unds for sup {?Kt)—e-t/u{ in terms of p.
t,F

The above problem for the class of completely monotone distributions
(mixtures of exponential distributions) was studied by Keilson [7], Heyde

{5], Heyde and Leslie (6], Hall [4], and Brown [1].

i; Brown [1] considered the class of IMRL (increasing mean residual life)
ii distributions on [0,®) deriving:

F

b,

= = -t/u )

. 1.1 F - < —r—

(1.1) Sttxpl (0)-e""] < 57

A

-~ (1.2) sup|F(B)-G(B)| < ==

2 BeB °

-' _1 -t/u o /r

. (1.3) sup |G(B) —J u e - Mde| A=) A AN

¢ BeB . ’B

-

- _ -t/ug o

. 1.4 G(t)- < .

- ( ) Sttxp! (t)-e l sy

9

;. 2 \
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ul In (1.2) and (1.3) above B 1is the collection of Borel subsets of
gfz [0,2). The quantity EEI was shown to be the best upper bound for (1l.1)

and (1.2) even within the subclass of completely monotone distributionms.

Brown [2] considered the class of IFR (increasing failure rate)

v

v

distributions. It turns out that in this case (1.1) and (1.2) hold with
BET replaced by 2p, and (1.3) and (1.4) hold with E%I replaced by
p. The bound 2p is the best bound for (1.1), among bounds of the
form coa.

In this paper we consider the problem for F NBUE (new better than

e -
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v it el Ve ettt
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used in expectation) and for F NWUE (new worse than used in expectation).

L gt
N Ladr i)
P TV I

These are the weakest among the commonly studied classes of aging distribu-

tions, and it is often easy to demonstrate that a distribution belongs to
one of these classes (NBUE and NWUE are defined in Section 2). The methods
of Brown ([1], [2]) do not generalize to these cases because the partial
ordering between F and G is too weak. Instead we use Fourier methods
adopted from Feller [3]. Our main result is that for F NBUE or NWUE:

(1.5) supff(t)-e-t/ul'i apt/?

t

where A = ééé ~ 3,119, For the NBUE case we show that the best bound of

4v6

the form cpa has o = 1/2 and 1 < ¢ f_—;— . Thus the potential

improvement in (1.5) for F NBUE is the lowering of the constant from
3.119 to 1. This remains true even within the subclass of IFRA distri-

;“ butions.
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2. Definitions and Preliminary Results. A distribution F on [0,»)

with F(0) <1 and finite mean | 1is defined to be NBUE if
E(X-t|X>t) < p for all t > 0 with F(t) > 0. Since E(X-t|X>t) =
u‘é(t)/f(t), it follows that F 41is NBUE if and only if F is stochas-
tically larger than G, the stationary renewal distribution corresponding
to F. Define hG to be the failure rate function of G and note that
ho(t) = (EGX-t|%>t)]™L, thus F 1is NBUE if and only if hg(t) > pt
for all t > 0 with F(t) > O.

A distribution F on [0,°) with F(0) > 1 and finite mean
is defined to be NWUE if E(X—t|X>t) >u for all t >0 with F(t) > 0.
This is equivalent to F being stochastically smaller than G, and also

to hg < uL.

Lemma 2.1. If F is NBUE then G(t) < e-C/M for all t > 0; for F NWUE,

Ge) 2 e M for a1l ¢ > 0.

Proof. TFor F NBUE 1let t, be the smallest number such that .f(to) =0,

0

with to =« if F(c) >0 for all t. Now ho(t) >u™" for O<t<t

thus G(t) < e-t/u for 0<t<t

o’
0 If ty < « then for t>t0
G(t) =0<e " If F 1is NWUE then F(t) > 0 for all ¢, for if

'15(:0) = 0 for a finite t, then lim E(X-t|%>t) = 0 < u. Thus
trt
0

ho(t) < u-l for all t >0 and G(t) > e-':/“l for all t > 0.

The following inequality (Lemma 2.2) is quite an important tool in
deriving our subsequent results. It relies heavily on a smoothing result

of Feller {3] (Lemma 1. p. 510).
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Lemma 2.2. Let Fl’ F2 be probability distributions on [0,®) with

finite means ul and “2' Assume that F1 is either stochastically
larger or smaller than FZ’ and that FZ is differentiable with
Fj(x) g_u;l for all x > 0. Then:

sup [Py 0)=F,(x) | < AL|ug-u, |/uy 12
X

where A = 4/6/m.

Proof. By Feller (3], Lemma 1 p. 510,

24
(2.3) sup|F, (x)-F,(x)| < 2 sup|T,, | +===
1 2 ¢ A(t) ﬂulT

where A(x) = Fl(x)-Fz(x)

TA(t) = I“ A(t-x)VT(x)dx

-0

l-cos Tx
2 L

V.(x) =
T TTx

Now, assume that F., 1s stochastically larger than Fz. Then:

1
iTA(t)I "J_w [Fl(t-x)-Fz(t-x)] L‘:::sz ax|
= [t [F (t=x)~-F. (t-x)] l-cos Tx dx
O -
2 7n I_w[Fl(t'x)‘Fz(t'x)]dx .
® o (Ul-uz).
5

L PSSO o P IPTIN e e - . IR T VUL SO P -,...Nx_._,_a....,..:...j
PP AP AP LY GAPOE YL IPUUP AP G Wil W U 0el SW0 WP SOT R - e [




Thus from (2.3):

sup|F; (x)-F, (x) | 5;1; (T(uy=ny) + a%]

Define L(T) = T(ul—uz) + then a routine differentiation argument

24
My

gives:

min L(T) = L[(24/Tul(u2-ul))l/2] = 4v6 [1-(112/111)]1/2
>0

and the result is proved.

If F2 is stochastically larger than F, the analogous result follows

1

by similar argument.

3. NBUE Results. Assume that F 1is NBUE. Recall that G(t) < F(t)

and G(t) < e-t/u for all t > 0, where G 1is the stationary renewal
distribution corresponding to F. Note that G'(x) = F(x)/p < u—l for

all x. Applying lemma 2.2 with F. = F, F2 = G we obtain:

1

- - H
(3.1) sup Fo0 S| < 48 (1% - &8 (12

By Brown [1] remark 4.14, for F NBUE:

(3.2)  sup|B(e)-e t/M| < sup|c(3)-f wlem® Mg < o .
B

Since F NBUE implies G(x) < min(F(x),e ") for all x > 0,

it follows that:
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3.3) supﬁ(x)-e-xml < MX(SUPIF(X)-E(X)LSUPIE(X)-e-x/u|) A % 01/2 )

Next, by simple computation:
(3.4) suple-t/“-e't/ucl < 1=(u/u) = o .
t/u

Moreover, e 3max(E(t),e-t/uG), thus:

(3.5) supl—G.(t)-e't/uGl < max(supla(t)-—e-t/ul,suple't/u-e't/ucl) <o .

We summarize these results in Theorem 3.6.

Theorem 3.6. Let F be NBUE. Then:

suplf(x)-e-xml < Apl/z

sup|F(x)-G(x)| < ap/2

sup]E(x)-e-x/UI < sup|G(B)- J u-le_t/udtl <p
B

sup |G (x)-e"*/Hg| <p

- where A = %/-6-: and P = 1-(u2/2u2).

Corollary (3.7) below presents a limit theorem for NBUE distributions.

Corollary 3.7. Let {Xn,n_>_ 1} be a sequence of NBUE random variables

2 2
with Hy EX,, uz’“ EXn and o 1-(u2n/2un). Then Xn/un

converges in distribution to an exponential distribution if and only if
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lim = 0, in which case the mean of the limiting exponential distribution

equals 1.

Proof. The sufficiency of the condition 1lim P, = 0 follows from

Theorem 3.6. To prove necessity assume that lim Pr(Xn> tun) = e-ct

for
all t >0, and some c > 0. Let G, denote the stationary renewal
distribution corresponding to Xn, and Hn the stationary renewal
distribution corresponding to Xn/un. Then ﬁ;(t) = E;(tun) and

OO —
pp=1- fo H_(t)de.

Now:

t
lim ﬁn(:) = 1-lim H () = 1-lim j Pr(X_ >su )ds = 1-[ (1-e"%%) /c)

n-m n-)'(” n->co 0

Since Xn is NBUE, so is Xn/un, and it thus follows from Lemma 2.1

that:

ﬁ;(t) j,e_t for all n, t >0 .
Thus by the dominated convergence theorem:

lim Py = 1-1lim rﬁ (t)dt = 1-r[1-{(1-e'°t)/c}]dt

n-eo o /g B 0

o for ¢ <1

=<0 for c=1
-t ~ for ¢ > 1.
e
2 2
o But NBUE distributions satisfy 0 < p < 1/2 (since Uy > u° by
E: Chebychev's inequality). Thus ¢ equals 1 and lim o, = 0.
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4. Potential Improvement of NBUE Bound. In the following example we have

a sequence of IFRA (and thus NBUE) distributions {F_, n > 1}, with

sup ﬁn(x)-e-xmnl
lim 173 =1.
nooo o,

It follows from this example and theorem 1 that the best bound of the form

4/6

cp® hasa =1/2 and 1 L ¢ £— . Thus the maximum potential improvement

T
1/2

in the bound Ap is the lowering of A to 1. This statement holds for

the NBUE class as well as for the subclasses NBU and IFRA.

The distribution Fn is defined by:

) e<d
n
F(e)=
e-t t > 1
—n
Then:
-1
U = n-l+e_'n
.‘ n
s -1
v -2 -1 -n
ﬁ;_ u2,n n “+2(n +l)e
3 a7t - l2
o p_ = 1-[(1+2n(n+l)e =~ )/2(14mne = )]

-1
supl'fn(x)-e-x/unl = l-exp[-1/(1+ne™™ )]

[~
"

It follows that:

D =nt+om™h

At e B D B B e A B Dciim B j




and

o, = n-2-+o(n-2)

Thus:

. 1/2, _
lim [Dn/lpnl ] =

n->e

5. NWUE Results. Assume that F is NWUE. Applying Lemma 2.2 with

Fl = F and F2 = G we obtain:

(5.1) sup | F(x)-G(x) | f_Apl/2 .

We do not know of an analogue of (3.2) for NWUE distributions, but

x/u

applying Lemma 2.2 with ?i(x) - e and F, = G we obtain:

(5.2) sup|5(x)—e-x/u|'§ apt’? .
Since G(x) Z_max(f(x),e-X/u) it follows from (5.1) and (5.2) that:
(5.3) sup{;(x)-e-x/u‘ i_Apl/2 .

x/u

- - - - -t
Finally since e < min(G(t),e t/uG) and sup|e t/uG_g /ul <

1-(H/UG) = p/p+l, we obtain:

(5.4) sup[E1x)-e-x/uGl < AOl/z .

10
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Corollary (3.7) does not hold for NWUE distributions. While (5.3)
insures that 1lim o, = 0 1is sufficient for convergence to an exponential
distribution, lim on = 0 1is not a necessary condition. To see this

consider the distribution F with failure rate:

e ey v~ e e
ey AMRONE an T T .." R PR
I AR . J RN N TN AR
PRSP DtiTe sl ST E N

Clearly F 1is DFR, with finite mean, and infinite second moment.

Now, for n=1,2,... define:

) rd—' s
. 0 e L r‘ ‘- l'

. Lt .

AR FUCE

-y

ra, 08
A
¢

Fn(x) = n—lF(x)4-(1—n-1)(l-é-x)

Since Fn is a mixture of DFR distributions, Fn is DFR and thus
NWUE. Clearly, Fn converges to an exponential distribution with mean 1.
However since F has infinite second moment, so does Fn’ and thus

pn = © for all n.

6. Geometric Sums. Y is defined to be a geometric sum of X with

parameter p if Y can be represented as Z? X, with {xi:iill}

i.i1.d. as X, N geometrically distributed with parameter p, and

N and {Xi} independent.

Lemma 6.1, If Y 1is a geometric sum of X with parameter p then

RSADACACAIE .
&

LA
.

LB 2 ae mn ben A
M . A
PR l. I R

oy = POy where py = |(ev?/2(0)%)-1] and oy = | (ex?/2 (8)%)-1].
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2 2 2
Proof. Define u = EX, Hy EX", © Var X, Hy EY, uz’Y EY

and oé = Var Y. Note that:

ii (6.2) My = u/p
(6.3) Gi, = quzp-zﬁ-czp-l .
Thus:
(6.4) My g = (1+q)uzp"‘7‘+021>-:L .
’
From (6.2) and (6.4):
(6.5) uy /202 = qr(u,p/2u?)
. 2,y/ <Py = aT,P .

We see from (6.5) that Hy Y/2u§ <1 if and only if u2/2u2 < 1.
14

Assume that u2/2u2 < 1. Then:
(6.6) 0y = 1=y o/2u2) = pl1-(u,/2uH)] = po
: Y 2,y %y TP 2 POy -
Finally for u,/2u% < 1:
(6.7) oy = (1, o/2u3)-1) = p[(u,/2u%)=1] = pp
. Y 2,v/ My 2 X

and the result is proved.

12
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Lemma 6.8. Suppose that Y is a geometric sum of X where X is NBUE.

Then Y 41is NBUE. The analogous result holds for X NWUE.

Proof. Consider a renewal process with interarrival time distribution X.
Binomial sampling with probability p of the renewal epochs leads to an

embedded renewal process with interarrival time distribution Y. It

* * -
follows that Y <can be represented as X + Z? 1 X5

the stationary distribution of X(¥). {Xi} is 1.i.d. as X, N 1is geometric

* *
where X (Y ) has

*
with parameter p, and X , {Xi}, and N are independent. But, Y is

representable as X + Z§-l X; with X, N and {Xi} independent. Now
*
if X 4is NBUE then X 1is stochastically greater than X so
N-1 * * N-1
Y=X+ Zl Xi is stochastically greater than Y =X + Zl xi, and

Y 1is thus NBUE. The analogous argument obviously works for X NWUE.

Theorem 6.9. Let X be either NBUE or NWUE with finite second moment.

Suppose that Y 1is a geometric sum of X with parameter p. Then:

-1
sup|Pr(¥> £)-e P | < a(poyl/?

where A = i;r@ and o = I(EXZ/Z(EX)z)-ll.

Proof. The result follows from Theorem 3.6, Lemma 6.7 and Lemma 6.8.

Note that Theorem 6.9 applies to defective renewal processes, which are

discussed in Feller {3], chapter XI, sections 6 and 7.

13
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